

RoboCup Asia-Pacific 2021

Team Description Paper

(Cover Page)

 League Name: Soccer Small Size League

Age Group: Major

Team Name: KIKS

Team Website: www.ee.toyota-ct.ac.jp/~sugi/RoboCup.html

Participants Name:

Toko Sugiura

Yusei Naito

Yasutaka Tsuruta

Ryoma Mitsuoka

Kosei Naito

Hayato Mitsuda

Daichi Miyajima

Hironobu Suzuki

Chihiro Takanashi

Yota Dori

Ryuto Tanaka

Mentor Name:

Institution: National Institute of Technology, Toyota College

Country: Japan

Contact Person: Toko Sugiura

Contact Email: sugiura.toko@toyota.kosen-ac.jp

Date: 10 August 2021

RoboCup Asia-Pacific 2021

Team Description Paper

Soccer Small Size League
Yusei Naito, Ryoma Mitsuoka, Yasutaka Tsuruta, Kosei Naito and Toko Sugiura

KIKS, National Institute of Technology, Toyota College, Japan

1. Abstract

This paper is used to qualify as participation to the RoboCup Asia-Pacific 2020 soccer small size

league. Our team's robots and systems are designed under the RoboCup 2020 rules. In this paper for

hardware, it is described about the various idea of dribble mechanism, whose importance was again

emphasized in the final of RoboCup 2019 Sydney. In software, the implementation of UCT (Upper

Confidence bound applied to Trees) in MCTS (Monte Carlo Tree Search) method was performed to

achieve the action-decision of the motion for the robots. Moreover, we tried to use Deep Learning

Library (Sony products) and Neural Network using GUI (Graphical User Interface) for layered design,

learning and evaluation in AI system.

2. Introduction
KIKS is the team consisting of students and faculty of mainly Department of Electrical and

Electronic Engineering in National Institute of Technology, Toyota College. About 10 members work

after school every normal day. We have continuously participated RoboCup small size league since

2004.

Websites:

http://www.ee.toyota-ct.ac.jp/~sugi/RoboCup.html

https://twitter.com/hashtag/kiks_ssl

3. Strategy

Hardware Research Overview In RoboCup SSL, to realize a strategy based on AI, it is necessary to have
a mechanism to accurately kick the ball and a mechanism to accurately receive the ball. Our present
robots, however, did not have enough performance of a mechanism for holding the ball, and often
bounce off the ball during the game. Also, when the ball was kicked, the ball sometimes rolled in a
different direction from the AI command because the ball was not held at the center of dribbling bar.
If we can improve the ball holding ability, the dribbler will be an effective tactics like ZJUNlict in final
game of RoboCup 2019 Sydney. In addition, when the dribbler's rotation can be sufficiently
transmitted to the ball, a curve shot may be realized, which will be effective in expansion of AI

strategies. Therefore, in this section, it focuses on dribbling performance which improves speed and
stability for a ball and describes an idea of new dribblers to improve the ball holding ability.

Present robot We have been using a robot with a 70W brushless DC motor as the drive motor since
2017. By using this motor, the torque of the robot is higher than previous one. In addition, direct drive
is possible because no gear for deceleration is required. In addition, the omni wheel has 20 small tires
per wheel. As a result, the shape of the omni-wheel is more like a regular circle. This is a change that
improves the acceleration performance of the robot because the maximum speed has been improved
by changing the motor. Typical our robots are shown in Fig. 1. Specification of present robot is
tabulated in Table 1.

Table 1. Specification of present robot

Dimension 𝝓180×135mm

Total weight 2040g

Driving motors Maxon EC-45 flat 70W

Gear No use

Wheel diameter 50mm

Dribbling motor Maxon EC-max 22 25W

Dribbling gear ratio 28:20

Dribbling bar diameter 15mm

MCU ATMEL AT32UC3B0512

FPGA Xilinx XC6SLX9

Communication link Digi XBee-pro 2.4GHz

Idea of dribbling device In the RoboCup 2019 Sydney final, the importance for dribbling performance
was once again demonstrated. So we tried an approach to receive the ball in center of the dribble bar.
In general, the speed of a dribble roller increases with increasing the radius. Therefore, by making the
central part thicker and the ends narrower, a force toward the central part is applied to the ball. We
propose a mechanism that can change the angle of the dribble bar using a servomotor. The 3D CAD
image is shown in Fig. 2. With this mechanism, when the ball is held, an infrared sensor recognizes the
position of the ball and adjusts the angle of the dribble bar based on the result. If the ball moves to
the left center of the dribble bar, for example, the ball can be returned to the center by changing the
angle of the dribble bar. This makes it possible to keep the position of the ball at the center of the
dribbling bar at any time.

In addition, even when the robot is dribbling, the angle of the dribble bar can be properly changed
by using the servo mechanism. Therefore, it is possible to continue dribbling without releasing a ball.

Fig. 1. Present our robots

Since the effectiveness of these performances has not been confirmed yet, detailed verification will
be examined in near future.

In RoboCup SSL, a wide choice for kicking mechanisms including straight kick, chip kick and curve
kick is effective in expanding the range of AI strategies. The mechanism of the curve kick has been
already reported by OP-AmP [1] and RoboTeam Twente [2], but we also considered its introduction.
We propose a new method for curve kick using a movable dribbler. Using the prototype mechanism
shown in Fig. 3, we tried to realize a curve kick by applying a diagonal force to the rotating ball. It is
possible to achieve by changing the angle of the dribbling-bar with a servomotor before kicking. It was
confirmed that the trajectory of the ball after kicking can be controlled by changing the angle of the
movable dribbler. But, it does not implement yet, because of some problems are occurred for
mounting a dribbling motor and link mechanism compactly and for considering the shape and material
as same as conventional dribbler. In near future, due to control the rotating speed of dribbler, the
orbital radius of the ball will be able to change and expand the application range of tactics. It will also
give advantage in penalty kick.

Fig. 2 3DCAD image of dribbler (conventional:Left and New one with servo-mechanism:Right).

Fig. 3 Dribble bar angle changing mechanism using a servomotor

Overhead view image

Software Research Overview In recent years, the field size and the number of robots is expanding in

RoboCup SSL. The conventional decision-making algorithm has problems such as not considering

prospects and poor expandability. It is impossible to realize cooperative actions such as passes during

in play and resulting in a low score rate. Therefore, we tried to apply a technique that combines Monte

Carlo tree search (MCTS) and neural network (NN), which has been successful in the field of game AI

in recent years. We tested this algorithm in practice games.

Introduction of Neural Network Libraries / Neural Network Console We have introduced the Neural

Network Libraries (NNabla)[3] and Neural Network Console[4] provided by Sony Network

Communications Inc. to implement Deep Learning. The neural network is designed, learned and

evaluated using the Neural Network Console, and inference is performed using C++ API of NNabla.

Neural Network Console can be operated with GUI, and trial and error are possible efficiently.

About MCTS When a robot plays soccer, there are various action options such as pass, shoot, and

dribble. Significant rule changes in recent years have increased the number of robots and the size of

the field. Rule changes may continue in the future. Therefore, decision-making for motion of the

robots considering prospects will be more important in strategy. We implemented an algorithm that

combines Monte Carlo Tree Search (MCTS) and Neural Networks with reference to AlphaZero [5,6]

developed by DeepMind. MCTS is a search method based on simulation results. This method has been

used in the field of Go etc. [5,6], but we applied it to soccer by inferring the success probability of

action.

Decision-making algorithm using Monte Carlo Tree Search The nodes of the game tree have information

of the position, elapsed time, Action, Reward, and Visit-count for the robot in the field. The node

transitions by Action. At this time, the transition probability to each node is derived by inferring the

success probability of Action using a Neural Network. This inference is also applied to the MCTS Rollout

(random simulation), and it is possible to obtain the expected value of the reward and to search for

promising actions. Typical game tree is shown in Fig. 4.

Fig. 4. Typical game tree for decision-making

MCTS is an algorithm that expands and searches a tree based on random sampling. Compared to

the αβ method generally used in Japanese chess (Shogi), it has the advantage that there is no need to

create and adjust complex evaluation functions. MCTS consists of five elements, i.e., Selection,

Expansion, Evaluation, Backup, and Play for the process as shown in Table 2. First, the algorithm

creates a root node with the state of the observed field. Next, selection, expansion, evaluation, and

propagation from the root node are repeated according to the search situation until a certain time

has elapsed. After that, the node with the highest number of selections is selected from the child

nodes connected to the root node, and the action to execute is made decision.

Table 2. Process elements on the Monte Carlo Tree Search

Process Definition

Selection Select the child node with the highest UCB1 value.

Expansion When a ball is in playing field even if the search reaches a leaf
node, the node is extended in case that the Visit-count is greater
than a certain value.

Evaluation When a ball is in playing field even if the search reaches a leaf
node, the result of Rollout (random simulation) from that state is
added to the reward of the node in case that the Visit-count is less
than a certain value.

Backup When a ball is not in playing field and the search reaches a leaf
node, the state evaluation value is propagated to the parent node.

Play After the search is completed, the node with the highest Visit-
count is selected, and the action to be performed is determined.

The UCB1 (Upper Confidence Bound) [7] described in eq. (1) was used as the selection criteria for

child nodes to be searched. UCB1 is well known for the multi-armed bandit problem, and it is possible

to search in consideration of the evaluation value and accuracy for decision branches. where, 𝑤𝑖 and

𝑛𝑖 show the Reward and the Visit-count for nodes i, respectively. The t indicates the Visit-count for all

of child nodes, c is the constant. In eq. (1), the first term indicates the average of the reward, and the

second term means the value that gives the reliability of the evaluation. The second term becomes

larger as the Visit-count (evaluation value) to the node is smaller than the total Visit-count and is easily

selected. That is, the evaluation value increases as the reliability of the first term decreases.

2log()
 i

i

i i

w t
UCB c

n n
 (1)

Fig. 5. MCTS execution procedure

(a)Creation of a root node
representing the current state

(b)Expansion from root node to node current state

(d)Expansion from a node whose evaluation
number reaches a certain level to a node

(c)Selection of the largest value of
UCB and evaluation by Rollout

The ϵ-greedy method, in which the evaluation value is randomly selected with a certain

probability, was also studied. In this study, however, UCB1 that mathematically guarantees

convergence to the optimal solution was used. The execution procedure of MCTS is shown in Fig. 5.

The update of the evaluation value and the expansion of the tree are repeated in Fig. 5 (c) and (d).

Finally, the action that transitions to the child node with the highest Visit-Count is executed except

the root node. For example, in Fig. 5, an action to transition to any of nodes B, C and D is executed.

Neural Network Designs The success probability of actions such as pass and shoot is inferred by a

neural network. The processing for the enemy robots is performed one by one, and the inferred values

of all the robots existing on the field are combined. Also, when creating teaching data and performing

inference, it was assumed that there was no enemy robot farther than the target position at the start

position of the action. That is, the inference was based only on the distance to the robot located in

front of the target position. For the input data, it was used the ball speed, the distance between the

ball and any enemy robot, and the angle between the ball and any enemy robot. The output is that

the ally robot can either act or not, without intercepting the ball by the enemy robots. The reachability

inference NN described here was composed of all connected layers, and several NNs with different

numbers of layers, nodes, and activation functions were compared.

Learning for Neural Networks More than one hundred learning data were obtained from the game

simulation on grSim[8], and sent to Neural Network Console and NNabla[3,4]. For the learning, it was

performed with a batch size of 32 and 2000 epochs.

(a) Neural Network structure (b) Typical Learning Curve

Fig. 6. Neural Network structure (a) and learning process (b).

Evaluation of neural network performance Fig. 6 shows the structure and learning curve of the

introduced reachability inference NN. The success probability of action is inferred by a NN structure

with all layers of connections as shown in Fig. 6 (a). This network infers the probability that an enemy

robot will get a moving ball. This inference is applied to all enemy robots on the field to calculate the

probability that the ball can move at any position and any speed. Execution example of learning

process is shown in Fig. 6(b). The horizontal axis shows the number of epochs (generations), the left

vertical axis shows the output of the cost function, and the right vertical axis shows the error rate.

TRAINING ERROR and VALIDATION ERROR indicate error rates for learning data and for verification

data, respectively. The introduced NN has two hidden layers. The first hidden layer has three nodes,

and the activation function is ReLU. The second hidden layer has three nodes, and the activation

function is Swish. The time until completion for learning was 36.2sec. Obtained probability are

tabulated in Table 3. The accuracy of the inferred value was about 84%, which was enough for use in

the actual games.

On the other hand, Table 4 shows the accuracy of NNs with different numbers of node in the

hidden layers. As the result, it can be confirmed that the accuracy is lower than that of introduced NN.

Table 3. Probability predicted by Neural Network on Confusion Matrix (50 samples)

Data\Predicted probability <0.5 ≥0.5 Recall

FALSE 18 7 0.72
TRUE 1 24 0.96

Precision 0.9473 0.7741
F-Measures 0.8181 0.857

Accuracy 0.84
Average of Precision 0.8607

Average of Recall 0.84
Average of F-Measures 0.8376

Table 4. Comparison of Accuracy for NN under varying conditions

Condition First hidden layer: 8,

Activ. func.: ReLU

Second hidden layer: 4,
Activ. func.: Swish

First hidden layer: 5,
Activ. func.: ReLU

Second hidden layer: 3,
Activ. func.: Swish

First hidden layer: 3,
Activ. func.: ReLU

Second hidden layer: 3,
Activ. func.: ReLU

Accuracy 0.76 0.76 0.64

Evaluation of decision-making algorithm An example for the action of this algorithm described above

is shown in Fig. 7. The circle in the lower center represents the ball, and the markers numbered B or Y

indicate the robots of each team (Observation on AutoReferee [9]). First, at the lower left in Fig. 7, the

B5 robot is moving toward the opponent’s goal after passing the ball toward B1. After that, by

receiving the ball again from B1 in front of the goal (ducking and weaving the opponent robots, Y1 and

Y4), it is found that the B5 robot will attack toward the goal. We introduced this algorithm to real game

(RoboCup JapanOpen 2019) and confirmed that an effective pass play could be realized. Furthermore,

we plan to use the selection probability and evaluation value for Action as the inference value of

Neural Network. As the result, the efficiency of the tree search is improved, and the range of the

decision branch for the action will be wider.

Fig. 7 An example for the action of this algorithm on grSim

Planned Neural Network structure is shown in Fig. 8. In this network, we consider a matrix of 1m
intervals. Only once per frame, it receives three channels as input, i.e., the positions for a ball and
both team's robots, and outputs the approximate expected score and the distribution of the
selection probabilities for action candidates. One of the problems of this method is that the
computational complexity is greater than conventional methods. As the solution, now we are
studying about the introduction of GPU for NN processing, and the separation and parallelization of
this method.

Fig. 8 Planned Neural Network structure for inferring expected score and the distribution of the

selection probabilities for action candidates.

4. Track Record

Up to now, we won 3rd place in 2012, 4th place in 2011 and 2010 in RoboCup SSL world

competition, and also won 3-times and 4-times champion in RoboCup Japan Open SSL and SSL-H,

respectively. In RoboCup2021, we got 5th place in upper tournament of virtual competition and 6th

place in hardware challenge of SSL. Moreover, as other robotics competition achievement, we won

First place in 1994, 1998 and Grand Champion in 2004 in all KOSEN ROBOCON held in Japan.

5. Discussion and Conclusion

At the RoboCup Japan Open in Nagaoka 2019 and RoboCup virtual competition 2021, it was

confirmed that our system could mostly realize the pass plays. The team won the third place and fifth

place, respectively. For the hardware, we devised two type dribbler which uses two small rollers to

improve stability and dribbler which uses a parallel link mechanism. Now we are developing these

prototype dribblers. We are going to compare the improved dribbler with conventional one. Based on

that experiment, we will compare it with the current dribbler and make improvements to make it a

better dribbler. For the software, we implemented an algorithm using neural networks and Monte

Carlo tree search. These technologies can be applied in other areas as well. We are also looking at

introducing neural networks at other layers, such as control and action.

Acknowledgements

The authors wish to express their deep appreciation to SNB corp. for providing the covers and

some parts of the robots. This work was supported in part by a Grants-in-Aid for Scientific Research

(C) (JSPS KAKENHI Grant Number 20K03263), a Grant-in-aid from Chuden Foundation for Education

and The Nitto Foundation.

References

[1] Takamichi Yoshimoto, Takato Horii, Shoma Mizutani, Yasuyuki Iwauchi,Yutaka Yamada, Kousei Baba, and
Shota Zenji: OP-AmP 2017 Team Discription Paper, https://www.robocup2017.org/le/symposium/soccer sml
size/Robocupssl2017-final9.pdf (2017).
[2] Cas Doornkamp, Zahra van Egdom, Gal Humblot-Renaux, Leon Klute, Anouk Leunissen, Nahuel Manterola,
Sebastian Schipper, Luka Sculac, Emiel Steerneman, Stefan Tersteeg, Christophe Vanderwalt, Wouter van
Veelen, Haichuan Wang, Jeroen Weener, Jelle Zult: RoboTeam Twente 2018 Team Description Paper,
https://ssl.robocup.org/wp-content/uploads/2019/01/2018 TDP RoboTeam Twente.pdf (2018).
[3] Neural Network Libraries, Sony Network Communications Inc., https://nnabla.org.
[4] Neural Network Console, Sony Network Communications Inc., https://dl.sony.com.
[5] D. Silver, J. Schrittwiser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A.

Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. v. d. Driessche, T. Graepel and D. Hassabis: Mastering the
game of Go without Human Knowledge, nature, 2017.

[6] D. Silver, A. Huang, J. C. Maddison, A. Guez, L. Sifre, G. v. d. Driessche, J. Schrittwieser, I. Antonoglou, V.
Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel and D. Hassabis: Mastering the game of Go with deep neural
networks and tree search, nature, 2016.

[7] P. Auer, N. Cesa-Bianchi and P. Fischer: Finite-time Analysis of the Multiarmed Bandit Problem, Machine
learning, 47(2-3):235–256, 2002.

[8] M. Valiallah (Mani), A. Koochakzadeh and S. S. Ghidary: grSim – RoboCup Small Size Robot Soccer Simulator
In Robot Soccer World Cup, pp. 450-460. Springer Berlin Heidelberg, 2011.

[9] TIGERs Mannheim Team: AutoReferee, [Online]. Available: https://github.com/TIGERs-
Mannheim/AutoReferee.

[10] G. M.-B. Chaslot, M. H. Winands and H. J. v. d. Herik, Parallel Monte-Carlo Tree Search, in Proc. Comput.
and Games, LNCS 5131, Beijing, China, 2008, pp. 60–71, 2008.

